"Multiaccess communication"
Channel access procedures of the state-of-the-art cellular standards create a significant overhead for small messages transmitted by Internet of Things (IoT) devices. As IoT becomes a major source of traffic for next-generation wireless …
Existing cellular infrastructures have to be revisited for emerging machine-to-machine (M2M) traffic as semi-synchronized M2M arrivals may create a significant congestion resulting in a high access delay. In such a case, there is a strong need for …
Rapid growth of machine-to-machine (M2M) communications necessitates the reevaluation of the Long Term Evolution-Advanced (LTE-A) performance, since the current standard is not optimized for intensive M2M traffic. A serious issue is that massive M2M …
We propose a model for the energy consumption of a node as a function of its throughput in a wireless CSMA network. We first model a single-hop network, and then a multi-hop network. We show that operating the CSMA network at a high throughput is …
Throughput model for non-persistent CSMA networks which was proposed by Kleinrock and Tobagi has been widely used, although it provides a loose lower bound when nodes are distributed in a large area because the analysis assumes that the propagation …
We analyze the performance of the CSMA protocol under propagation delays that are comparable with packet transmission times. We propose a semi-Markov model for the 2-node CSMA channel. For the 2-node case, the capacity reduces to 40% of the …